Code No.: 15345 S N

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD Accredited by NAAC with A++ Grade

B.E. (E.E.E.) V-Semester Supplementary Examinations, June-2023 **Digital Electronics**

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Q. No	Part-A ($10 \times 2 = 20 \text{ Marks}$) Stem of the question	T		24 (31)		
1.	What are the most common types of logic gates, and what are their bar operations?	sic	M 2	1	1	
2.			-	1	1	1,2
3.	Convert the following: i) $(3B8)_{16} = (?)_{10}$ ii) $(4528)_{10} = (?)_{16}$ Draw three variable K-map format.		2	3	1	1,2
4.	What is a multiplexer and how it is used to select one of the several inputsionals?		2	2	2	1,2
5.	Write the excitation table of D flip flop.	ut	2	1	2	1,2
6.	Define modulus of a counter? W.	1	2	2	2	1,2
	Define modulus of a counter? Write down the number of flip flop required for mod-5 counter?	- 1	?	2	2	1,2
7.	What is the settling time of a DAC and how does it impact its performance?	8 2		1	3	1,2
8.	How signal-to-noise ratio of an ADC is used to evaluate its operation?					-,-
9.	What is a Read only memory (ROM), how it is used to store data or instructions?	2		4	3	1,2
	Discuss programmable logic devices?	2		1	4	1,2
	Part-B $(5 \times 8 = 40 \text{ Marks})$	2	2	2	4	1,2
. a)]	Discuss the following number systems with examples: Decimal, Binary, Octal, and Hexadecimal	4	2		1	1,2
b) (Compare the parameters of TTL, ECL and CMOS logic families.					
. a) I	Almimize the following expression using V	4	2			,2
	$(F, Q, R, S) = \Sigma \text{ m } (0, 1, 4, 5, 7, 8, 9, 12, 13, 15).$	4	3	4	2 1	,2
-	Describe function of full adder circuit with its truth table, K-map mplification and logic diagram.	4	3	2	1.	,2
a) D di	escribe the working of SR Flip-Flop with Truth Table and Logic agram.	4	3	2		
b) De	esign 3-bit synchronous counter and draw output waveform.				-,	

Code No.: 15345 S N

14. a)	Describe the working principle of Successive approximation type ADC	4	3	3	1,2
	with the help of block diagram. What are the differences between a binary weighted DAC and a R-2R	4	1	3	1,2
	ladder DAC?	4	2	4	1,2
15. a)	Compare the following (i) Volatile with Non-Volatile memory. (ii) SRAM with DRAM memory.				
b)	Draw and explain block diagram of Programmable array logic.	4	2	4	1,2
16. a)	Draw the symbol and write logic expression and truth table of the two input universal logic gates.	4	2	1	1,2
b)	Design a two bit magnitude comparator using logic gates.	4	4	2	1,2
17.	Answer any two of the following:		•	2	1.0
a)	Describe the operation of 4 bit PISO shift register with the help of block diagram.	4	2	2	1,2
b)	Explain the working principle of R-2R ladder type DAC with the help of	4	1	3	1,2
c)	neat diagram Implement the following function using PLA.	4	4	4	1,2
	$F1(A,B,C) = \sum (0,1,2,4)$				
	$F2(A,B,C)=\sum (0,5,6,7)$				

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

*	Townsony I evel _ 1	20%
)	Blooms Taxonomy Level – 1 Blooms Taxonomy Level – 2	40%
1)	Blooms Taxonomy Level – 3 & 4	40%
i)	Blooms Taxonomy Level - 3 & .	
